flyingV 发表于 2013-2-7 07:51:17

初学Hadoop,统计Top10单词

课程明明叫SeachTechnology,本以为可以趁机好好学一下Lucene和Nutch,结果Project却是使用分布式计算框架Map/Reduce的开源项目Hadoop进行文档关键词的自动提取,算了,既来之则安之,都是Doug Cutting的作品啊。
Project要求是给定250个文章的摘要(trial data),通过三个步骤
1.preprocessing such as Part-of-Speech tagging,lemmatization and stemming
2.candidate generation
3.candidate ranking
提取前十的关键字,然后将算法在test data上运行,与人工提取的关键字进行比较来评价算法的优劣,要求使用Map/Reduce以使得算法可以在大规模数据上运行。
学习Hadoop的最好资料应该是Hadoop: The Definitive Guide。

花了一天时间在Ubuntu上配置完了环境,先在eclipse下写了个统计Top10单词的程序进行一下standalone模式下的试验。期间涉及到一个停用词的删除问题,发现Lucene下面有一个StopFilter可用?得好好研究下

TopWords.javaimport java.io.*;import java.util.*;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.*;import org.apache.hadoop.mapred.*;public class TopWords {private static boolean enalbeRemoveStopWords = false;public static class Map extends MapReduceBase implementsMapper<LongWritable, Text, Text, WordCountPair> {private Text word = new Text();private Text location = new Text();private final String[] PUNCTUATIONS = {"\\?","\\.","\\[","\\]",",","\\(","\\)"};private final String[] STOP_WORDS ={"\\ba\\b", "\\ban\\b", "\\band\\b", "\\bare\\b","\\bas\\b","\\bat\\b","\\bbe\\b","\\bbut\\b",            "\\bby\\b", "\\bfor\\b", "\\bif\\b", "\\bin\\b", "\\binto\\b", "\\bis\\b", "\\bit\\b",            "\\bno\\b", "\\bnot\\b", "\\bof\\b", "\\bon\\b", "\\bor\\b", "\\bs\\b", "\\bsuch\\b",            "\\bthat\\b", "\\bthe\\b", "\\btheir\\b", "\\bthen\\b", "\\bthere\\b","\\bthese\\b",            "\\bthey\\b", "\\bthis\\b", "\\bto\\b", "\\bwas\\b", "\\bwill\\b", "\\bwith\\b" };/* the output of map is <filename,<word,frequency>>*/public void map(LongWritable key, Text value,OutputCollector<Text, WordCountPair> output, Reporter reporter)throws IOException {/*get the filename*/FileSplit fileSplit = (FileSplit) reporter.getInputSplit();String fileName = fileSplit.getPath().getName().replaceAll("\\.txt", " :");location.set(fileName);/*normalize the words*/String line = value.toString().toLowerCase();for(String s : PUNCTUATIONS)line = line.replaceAll(s, "");if(enalbeRemoveStopWords){for(String s : STOP_WORDS)line = line.replaceAll(s, "");}StringTokenizer tokenizer = new StringTokenizer(line);while (tokenizer.hasMoreTokens()) {word.set(tokenizer.nextToken());output.collect(location,new WordCountPair(word,1));}}}/*Rudece传进来的是 <filename,List(<word,frequency>) >*/public static class Reduce extends MapReduceBase implementsReducer<Text, WordCountPair, Text, Text> {List<WordCountPair> list = new ArrayList<WordCountPair>();public void reduce(Text key, Iterator<WordCountPair> values,OutputCollector<Text, Text> output, Reporter reporter)throws IOException {list.removeAll(list);/*get the statistics of all the <word,frequency>pair in a list*/while (values.hasNext()) {WordCountPair temp = values.next();//System.out.println(temp);int i;if( (i=list.indexOf(temp)) != -1)list.get(i).frequency++;elselist.add(new WordCountPair(temp));}/*sort the list according to frequency and output the top 10*/Collections.sort(list);//System.out.println(list.toString());StringBuilder topWords = new StringBuilder();boolean first = true;for(int i=0;i<Math.min(10, list.size());i++){if(!first)topWords.append(",");first = false;topWords.append(list.get(i).word.toString());}output.collect(key, new Text(topWords.toString()));}}public static void main(String[] args) throws Exception {if(args.length < 2){System.err.println("Usage:Java TopWords input output [-stop]");System.exit(1);}JobConf conf = new JobConf(TopWords.class);conf.setJobName("TopWords");conf.setOutputKeyClass(Text.class);conf.setOutputValueClass(WordCountPair.class);conf.setMapperClass(Map.class);conf.setReducerClass(Reduce.class);conf.setInputFormat(TextInputFormat.class);conf.setOutputFormat(TextOutputFormat.class);FileInputFormat.setInputPaths(conf, new Path(args));FileOutputFormat.setOutputPath(conf, new Path(args));if(args.length == 3){if(args.equals("-stop"))enalbeRemoveStopWords = true;else{System.err.println("Usage:Java TopWords input output [-stop]");System.exit(1);}}JobClient.runJob(conf);}}


import java.io.*;import org.apache.hadoop.io.Text;import org.apache.hadoop.io.Writable;/** * WordCountPair是自定义类型,需要实现Writable接口(如果作为Key的话,则需要实现WritableComparable接口 */public class WordCountPair implements Writable,Comparable<WordCountPair>{public Text word; public int frequency;public WordCountPair(Text word, int frequency){this.word = new Text(word);this.frequency = frequency;}public WordCountPair(){this(new Text(), 1);}public WordCountPair(WordCountPair wcp){this(wcp.word,wcp.frequency);}public void readFields(DataInput in) throws IOException {word.readFields(in);frequency = in.readInt();}public void write(DataOutput out) throws IOException {word.write(out);out.writeInt(frequency);}@Overridepublic boolean equals(Object o) {if (o instanceof WordCountPair) {WordCountPair wcp = (WordCountPair) o;return word.equals(wcp.word);}return false;}/* sort according to the frequency of the word,descending order*/public int compareTo(WordCountPair other) {return other.frequency - this.frequency;}public String toString() {return word + "," + frequency;}}
页: [1]
查看完整版本: 初学Hadoop,统计Top10单词